Houses and Low Rise Multi Residential
PowerPanelXL External Walls

DESIGN AND INSTALLATION GUIDE
This Design and Installation Guide has been prepared as a source of information to provide general guidance to consultants – and in no way replaces the services of the professional consultant and relevant engineers designing the project.

It is the responsibility of the architectural designer and engineering parties to ensure that the details in this Design and Installation Guide are appropriate for the intended application.

The recommendations of this guide are formulated along the lines of good building practice, but are not intended to be an exhaustive statement of all relevant data.

CONTENTS

Introduction 1

1. Design and selection details 4
1.1 Designing an external wall using Hebel PowerPanelXL 4
1.2 Structural provisions 5
1.3 Design & detailing considerations 10
1.4 System components 12

2. System performance 14
2.1 Durability 14
2.2 Fire resistance performance 16
2.3 Energy efficiency 17
2.4 Sound transmission and insulation 21
2.5 Coating requirements 22
2.6 Weatherproofing 23

3. Installation detail 24
3.1 Hebel PowerPanelXL installation sequence 24
3.2 Tools and equipment for construction 25
3.3 Installation of services 25
3.4 Construction details – overview 26
3.5 Construction details – Hebel PowerPanelXL 28

4. Handling, storage and responsibility 49
4.1 Delivery and storage 49
4.2 Panel handling 50
4.3 Design, detailing and performance responsibilities 52

Appendices 53
Appendix A: Hebel PowerPanelXL material properties 53
Appendix B: Architectural specification 54
Appendix C: PowerPanelXL external wall system descriptions 55
WHY HEBEL® SYSTEMS ARE A BETTER WAY TO DESIGN AND BUILD

Whether you’re a developer, architect, designer, builder or wall installer, Hebel wall systems deliver exceptional advantages in terms of performance, quality, speed, efficiency, risk minimisation and sustainability values.

Creating high performance buildings using Hebel PowerPanel®XL

At the heart of the Hebel external wall system for houses and low-rise multi-residential projects is the Hebel PowerPanel®XL - a 75mm thick steel reinforced panel made from autoclaved aerated concrete (AAC).

Developed and warranted by CSR, the Hebel PowerPanel®XL can reduce heating and cooling loads on buildings and is non-combustible. It can be produced to the size needed, is easily cut, makes construction fast and efficient, creates minimal waste and is a better choice for the environment compared with concrete or brick.

As with all Hebel reinforced panel products, PowerPanel®XL conforms to the Australian Standard for Reinforced Autoclaved Concrete (AAC), AS 5146.

Construction speed and efficiency

The Hebel PowerPanel®XL External Wall System speeds up the build process at the same time as delivering a superior finished product – a key reason why developers, builders and owner / builders choose Hebel. For instance, one standard Hebel panel is the equivalent of 75 traditional bricks, which means the walls of a 150m² home can go up in as little as three days when installed by experienced Hebel installers.

Minimising risk

Hebel wall systems provide a solid foundation for risk minimisation in design and construction. They are tested, well proven and designed to achieve NCC fire and thermal compliance easily. Combining the non-combustible property of PowerPanel®XL with advanced system designs, CSR Hebel delivers high value cost effective solutions that significantly reduce risk points in construction.

Gaining high sustainability values

Hebel AAC is a durable inert product, made from raw materials in a process that minimises embodied energy. The low bulk density of Hebel AAC means less than a quarter of the resources in raw materials are used in its production than for concrete and bricks.

Waste in production is reduced through extensive recycling. Production waste, slurry and even the steam generated are all recycled back into the manufacturing process while waste steel and oil are recycled off site. Even the non-toxic citrus based solvents used for cleaning are recycled. Onsite the combination of panel sizes designed to suit standard building modules and the ease of working with standard power tools means there is very little waste. This goes a step further when panels are made-to-order. Altogether, Hebel is one of the most environmentally responsible building materials for wall system construction.

Leveraging the exceptional value-add of Hebel systems

Quite simply the Hebel PowerPanel®XL External Wall System for houses and low rise multi-residential projects delivers a holistic solution that no other systems can match. It benefits all stakeholders in the project lifecycle through its role in value-adding to the project’s quality, design and construction efficiency, risk minimisation and cost and time certainty.
INTRODUCTION

The patented Hebel Perforated Top Hat for fast and robust installation.
STRONG AND SOLID
Hebel panels are high-performance building products made from autoclaved aerated concrete (AAC) containing corrosion protected steel reinforcement for maximum strength and durability.

ENERGY EFFICIENT
Hebel panels have superior insulation qualities compared to brick and concrete. Tests have shown a house built with Hebel PowerPanelXL performs better than brick veneer in terms of both heating and cooling. This can save the homeowner in heating and cooling energy costs, and earn the home half a star more in energy star ratings.

QUALITY AND SPEED
Building with Hebel can mean faster construction times, without sacrificing on quality. One standard Hebel panel is the equivalent of 75 traditional bricks, which means the external walls of a 150m² home can go up in just 3 days when installed by experienced Hebel installers. A high quality building material, Hebel provides a great solution in terms of speed and ease of construction which is why it is increasingly becoming the preferred choice of builders and developers.

ECO-FRIENDLY
Independent testing shows that overall, Hebel has a 30% lower environmental impact than concrete or brick veneer. Hebel panels use 60% less embodied energy and produce 55% less greenhouse emissions compared to concrete or brick veneer, making it a more sustainable, environmentally friendly choice of building material.

NOISE REDUCTION
A Hebel home is a quiet one. Building your home in Hebel can significantly reduce the noise transmission between rooms, and when used for floors, can reduce sound transference between levels as well. Compared to polystyrene and many fibre cement substrates, use of Hebel for external walls reduces noise from external sources like traffic, meaning more peace and quiet.

FIRE RESISTANT
Hebel is renowned for its fire resistant properties, and is a non-combustible building material. Hebel systems have been tested by the CSIRO and are proven to achieve Fire Resistance Levels (FRLs) of 60 minutes through to 240 minutes – as well as meeting or exceeding the requirements for all six Bushfire Attack Level (BAL) categories. This makes it an ideal choice in bushfire zones.
1.1 DESIGNING AN EXTERNAL WALL USING HEBEL POWERPANELXL

DESIGN PROCESS
This section outlines the design process for determining the adequacy of Hebel PowerPanelXL panel.

STEP 1 Determine the wind category, stud framing layout and panel height requirements.

STEP 2 Design Criteria. Where required identify the National Construction Code (NCC) Performance Requirements:
- Fire Resistance Level (FRL).
- Sound insulation performance (R_w values).
- Energy efficiency (R-Value).

STEP 3 The table below can be used to select a type, spacing and quantity of top hats and fixings to suit requirements.

STEP 4 Select insulation and/or sarking material to suit energy efficiency and condensation requirements.

STEP 5 Check adequacy of sound insulation and fire resistance level.

STEP 6 Complete detailed design and documentation.

COMPLIANCE WITH THE NATIONAL CONSTRUCTION CODE OF AUSTRALIA [NCC]
All building solutions such as walls, floors, ceilings, etc. must comply with the regulations outlined in the NCC or other authority.

The NCC is a performance based document, and is available in two volumes which align with two groups of ‘Class of Building’:
- Volume 1 – Class 2 to Class 9 Buildings; and
- Volume 2 – Class 1 & Class 10 Buildings – Housing Provisions.

Each volume presents Regulatory Performance Requirements for different Building Solutions for various classes of buildings and performance provisions.

These Performance Provisions include: Structure; Fire Resistance; Damp & Weatherproofing; Sound Transmission & Insulation; and Energy Efficiency.

This guide presents tables, charts and information necessary to assist in the design of a system incorporating Hebel PowerPanelXL that complies with the Performance Requirements of the NCC. The designer must check the adequacy of the building solution for Performance Requirements outlined by the appropriate authority.

COMPLIANCE WITH AS 5146:2015 - REINFORCED AUTOCLAVED AERATED CONCRETE
All Hebel reinforced panel products conform with the Australian Standard for Reinforced Autoclaved Aerated Concrete (AAC), AS 5146.

The set of AS 5146 standards comprise of 3 parts:
- AS 5146 Part 1 – Structures
- AS 5146 Part 2 – Design
- AS 5146 Part 3 – Construction

These Standards were referenced in the Building Code of Australia in May 2016 making compliant AAC products Deemed-to-Satisfy (DTS) building materials.

AS 5146.3:2015 – Construction, Section 4 contains details for 75mm reinforced AAC external walls in houses and low rise multi residential buildings, considered a DTS building system.

This provides the endorsement and confidence to regulatory and building certification bodies that the Hebel PowerpanelXL External Wall System is a NCC compliant construction system.
1.2 STRUCTURAL PROVISIONS

OVERVIEW

The Hebel PowerPanelXL External Wall System consists of Hebel PowerPanelXL panels secured to the framing via horizontal steel top hats. This section provides the basic information on the selection of top hat spacings for a given stud spacing and wind category, as well as considerations to assist the designer in determining the appropriate wall configuration.

The design information presented in Tables 1.2.1 to 1.2.5 has been determined for the 24mm Hebel Perforated Top Hat section.

For other types of top hats, contact Hebel. Minimum performance requirements for the metal studs, Hebel Perforated Top Hats, fixings and Hebel PowerPanelXL have been provided to assist the designer.

IMPORTANT: The design and approval of the structural framing (cold-formed steel or timber) is to be provided by the framing product manufacturer and/or project engineer.

PRINCIPLES OF DESIGN

The principles on which the design is based include:

a) The lateral wind loads applied to the panels are transferred into the horizontal top hats, then to the stud frame, which should be designed in accordance with the relevant Australian Standards for the imposed loads. The frame should be designed for all bracing and hold-down requirements.

b) The design of the stud frame shall consider the weight of the suspended panels (such as the upper storey of two-storey construction).

c) The system is not considered as cavity construction, as the Top Hat clearly bridges the cavity, hence the details show the necessity of sealing the windows and door frames, as well as applying a water resistant external coating.

d) The system specifications vary with wind load. The notation used in AS 1684 Residential Timber Framed Construction has been adopted.

e) The localised effects of wind around corners of buildings have been considered in the design and included in the tables. The extent of this effect is discussed towards the end of this section.

Design Procedure

Design procedures for the verification of wall systems consisting of Hebel Autoclaved Aerated Concrete (AAC) PowerPanelXL panels generally follow the design principles outlined in Australian Standard AS 3600 – Concrete Structures for strength and serviceability design, with the exception of cover requirements for durability and development length for reinforcement.

The serviceability design of the Hebel PowerPanelXL panels has been carried out using the Transformed Section Theory, as detailed in the text book, ‘Reinforced Concrete’ by Warner, Rangan and Hall (Longman Cheshire). The load carrying capacity of the Hebel PowerPanelXL panels is influenced by several factors, such as:

- Imposed action (wind).
- Lateral stiffness of the supporting structure, lightweight structural, cold-formed steel framing.
 - Stud size and spacings.
 - Deflection limit.
- Height of the wall.
- Number and spacing of the top hats.
- Number of screw fixings considered effective.

Criteria for corner panels

Due to the increase of wind load around the corners of buildings, extra top hats and screws may be necessary (N3 and greater) for a distance of 1200mm in each direction from the corner.

Tables 1.2.1 to 1.2.5 identify the installation criteria in these areas in the columns titled ‘Panel Location – Corner’.

Earthquake loads

Earthquake loading has not been considered in this design guide.

DESIGN TABLES

This section presents tables to assist the designer in the selection of the number of top hats and number of screws for securing the Hebel PowerPanelXL panels to the framing for a given wind category.

IMPORTANT: The wind category is to be used as a guide. The designer should check the project wind pressure against the valves given in the tables.

STUD FRAME – STEEL OR TIMBER

The stud frame shall be designed by the stud manufacturer or appropriate project engineer. Hebel PowerPanelXL panels are a steel reinforced AAC product and the support structure should be designed to provide sufficient stiffness.

The steel stud frame shall be designed and constructed in accordance with AS 3623 and AS/NZS 4600 (NCC Performance Requirement).

The timber stud frame shall be designed and constructed in accordance with AS 1684.
HEBEL PERFORATED TOP HAT

Hebel Perforated Top Hats in galvanised steel are provided in nominal widths of 24mm and 35mm and have been designed and constructed in accordance with AS 3623 and AS/NZS 4600 (NCC Performance Requirement). The following tables are based on the 24mm Hebel Perforated Top Hat section:

24mm Perforated Steel Top Hat section properties:
- Cold-formed perforated steel top hats
- Minimum thickness 0.42mm BMT
- Minimum yield strength 550MPa (zincalume)
- Coating class AZ150 (see Durability).

35mm Perforated Steel Top Hat section properties:
- Cold-formed perforated steel top hats
- Minimum thickness 0.55mm BMT
- Minimum yield strength 270MPa (Galvabond)
- Coating class Z275 (see Durability).

PANELS SUPPORTED AT BASE

Table 1.2.1 Number of top hats – panel supported at base (such as slab edge or shelf angle)

<table>
<thead>
<tr>
<th>Wind category</th>
<th>Ultimate wind pressure (kPa)</th>
<th>Stud spacing (mm)</th>
<th>Typical</th>
<th>Corner</th>
<th>Typical</th>
<th>Corner</th>
<th>Typical</th>
<th>Corner</th>
<th>Typical</th>
<th>Corner</th>
<th>Typical</th>
<th>Corner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Away from corners</td>
<td>Within 1200mm of corners</td>
<td>2400</td>
<td>2700</td>
<td>3000</td>
<td>3300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>0.67/-0.62</td>
<td>-1.25</td>
<td>600</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>N3, C1</td>
<td>1.05/-0.98</td>
<td>-1.95</td>
<td>600</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>N3, C1</td>
<td>1.05/-0.98</td>
<td>-1.95</td>
<td>450</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>N4, C2</td>
<td>1.56/-1.45</td>
<td>-2.90</td>
<td>450</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>N5, C3</td>
<td>2.30/-2.14</td>
<td>-4.27</td>
<td>450</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Negative pressure indicates wind suction.
2. All top hats to be spaced evenly, with top and bottom top hats installed 250mm (maximum) from the end of the PowerPanel XL.
3. Additional top hats will be required below all window openings and above openings if a PowerPanel XL or sill block is to be installed in this location.
4. Corner panel location applies to a PowerPanel XL panel within 1200mm of corners.

Table 1.2.2 Number of screws per panel at each top hat location – panel supported at base (such as slab edge or shelf angle)

<table>
<thead>
<tr>
<th>Wind category</th>
<th>Ultimate wind pressure (kPa)</th>
<th>Stud spacing (mm)</th>
<th>Number of screws per panel per top hat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Away from corners</td>
<td>Within 1200mm of corners</td>
<td>Typical</td>
</tr>
<tr>
<td>N2</td>
<td>0.67/-0.62</td>
<td>-1.25</td>
<td>600</td>
</tr>
<tr>
<td>N3</td>
<td>1.05/-0.98</td>
<td>-1.95</td>
<td>600</td>
</tr>
<tr>
<td>N3, C1</td>
<td>1.05/-0.98</td>
<td>-1.95</td>
<td>450</td>
</tr>
<tr>
<td>N4, C2</td>
<td>1.56/-1.45</td>
<td>-2.90</td>
<td>450</td>
</tr>
<tr>
<td>N5, C3</td>
<td>2.30/-2.14</td>
<td>-4.27</td>
<td>450</td>
</tr>
</tbody>
</table>

NOTES:
1. Type of screw used is 14-10x90mm hex head type 17 screw, fixed from outside the building.
2. Corner panel location applies to PowerPanel XL within 1200mm of corners.
Table 1.2.3 Number of screws per panel at each top hat location – panel suspended at gable ends

<table>
<thead>
<tr>
<th>Wind category</th>
<th>Ultimate wind pressure (kPa)</th>
<th>Stud spacing (mm)</th>
<th>Number of screws per panel per top hat</th>
<th>Maximum spacing of top hat (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Away from corners</td>
<td>Within 1200mm of corners</td>
<td>Panel location</td>
<td>Panel location</td>
</tr>
<tr>
<td>N2</td>
<td>0.67/-0.62</td>
<td>-1.25</td>
<td>600</td>
<td>2</td>
</tr>
<tr>
<td>N3</td>
<td>1.05/-0.98</td>
<td>-1.95</td>
<td>600</td>
<td>3</td>
</tr>
<tr>
<td>N3,C1</td>
<td>1.05/-0.98</td>
<td>-1.95</td>
<td>450</td>
<td>3</td>
</tr>
<tr>
<td>N4,C2</td>
<td>1.56/-1.45</td>
<td>-2.90</td>
<td>450</td>
<td>4</td>
</tr>
<tr>
<td>N5,C3</td>
<td>2.30/-2.14</td>
<td>-4.27</td>
<td>450</td>
<td>4</td>
</tr>
</tbody>
</table>

NOTES:
1. Top and bottom top hats installed 250mm (maximum) from the end of the PowerPanelXL panel.
2. Top hats to be installed horizontally with panels to span vertically. Number of screws per panel per top hat information is not suitable for soffits or any other areas where the panel is not vertical.
3. Corner panel location applies to PowerPanelXL panels within 1200mm of corners.
4. Type of screw used is 14-10x90mm hex head type 17 screw, fixed from outside the building.

Table 1.2.4 Number of top hats – panel suspended from framing (e.g second storey construction)

<table>
<thead>
<tr>
<th>Wind category</th>
<th>Ultimate wind pressure (kPa)</th>
<th>Stud spacing (mm)</th>
<th>Number of top hats per panel</th>
<th>Panel length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Away from corners</td>
<td>Within 1200mm of corners</td>
<td>Panel location</td>
<td>Panel location</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typical</td>
<td>Corner</td>
</tr>
<tr>
<td>N2</td>
<td>0.67/-0.62</td>
<td>-1.25</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>N3</td>
<td>1.05/-0.98</td>
<td>-1.95</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>N3,C1</td>
<td>1.05/-0.98</td>
<td>-1.95</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>N4,C2</td>
<td>1.56/-1.45</td>
<td>-2.90</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>N5,C3</td>
<td>2.30/-2.14</td>
<td>-4.27</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

NOTES:
1. Negative pressure indicates wind suction.
2. All top hats to be spaced evenly, with top and bottom top hats installed 250mm (maximum) from the end of the PowerPanelXL panel.
3. Additional top hats will be required below all window openings and above openings if a panel or sill block is to be installed in this location.
4. Corner panel location applies to PowerPanelXL panels within 1200mm of corners.

Table 1.2.5 Number of screws per panel at each top hat location – panel suspended from framing (e.g second storey construction)

<table>
<thead>
<tr>
<th>Wind category</th>
<th>Ultimate wind pressure (kPa)</th>
<th>Stud spacing (mm)</th>
<th>Number of screws per panel per top hat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Away from corners</td>
<td>Within 1200mm of corners</td>
<td>Panel location</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Top hat location</td>
</tr>
<tr>
<td>N2</td>
<td>0.67/-0.62</td>
<td>-1.25</td>
<td>600</td>
</tr>
<tr>
<td>N3</td>
<td>1.05/-0.98</td>
<td>-1.95</td>
<td>600</td>
</tr>
<tr>
<td>N3,C1</td>
<td>1.05/-0.98</td>
<td>-1.95</td>
<td>450</td>
</tr>
<tr>
<td>N4,C2</td>
<td>1.56/-1.45</td>
<td>-2.90</td>
<td>450</td>
</tr>
<tr>
<td>N5,C3</td>
<td>2.30/-2.14</td>
<td>-4.27</td>
<td>450</td>
</tr>
</tbody>
</table>

NOTES:
1. Type of screw used is 14-10x90mm hex head type 17 screw, fixed from outside the building.
2. Corner panel location applies to PowerPanelXL panels within 1200mm of corners.
FIXINGS

Table 1.2.6 outlines the connection type and requirements for constructing Hebel PowerPanelXL detailed in this design guide.

NOTE: From Table 1.2.6, 14-10x90mm hex head type 17 screws are specified and recommended for fixing the PowerpanelXL panel to top hat sections from the outside of the building. Refer to Hebel Technical Update TU-017 where bugle head screws are desired to be used in lieu of the 14-10x90mm hex head type 17 screws for this connection.

The project engineer or framing manufacturer is responsible for specification of alternative details. The minimum performance requirement of the screw is:

- Minimum screw coating class in accordance with AS 3566: Class 3. (Refer Section 6.0 for Durability).

Boundary wall installation

Where access is limited or unavailable for fixing the PowerPanelXL panel to the top hat section from the outside of the building, such as in boundary wall installations, then fixing of the panel from the inside of the building using 14-10x65mm hex head type 17 screws is permitted on the basis that one additional screw (to the number of screws noted in Tables 1.2.2, 1.2.3 & 1.2.5) is provided per panel per top hat connection. For more details refer to Figure 3.5.4.2 and Hebel Technical Update TU-018.

| Table 1.2.6 Screws types |
|----------------------------------|--|------------------|
| **Type of screw** | **Application** | **Socket type** |
| 12-11x35mm hex head type 17 screw | Fix top hat to timber frame | 5/16" hex mag. socket |
| 10-16x16mm hex head self drilling screw | Fix top hat to steel stud frame (1.2mm BMT max.) | 5/16" hex mag. socket |
| 14-10x65mm hex head type 17 screw | Fix PowerPanelXL to top hat from inside of building (Boundary application only)* | 3/8" hex mag. socket |
| 14-10x90mm hex head type 17 screw | Fix PowerPanelXL to top hat from outside of building | 5mm hex drive bit 50mm long |

* For construction details of PowerPanelXL panels in boundary wall applications, please contact Hebel Technical Services.
STRUCTURAL FRAMING DESIGN

The use of Hebel PowerPanelXL in two-storey construction involves a number of design issues that require attention. In conjunction with the following, refer to the Construction Details in Section 3.5.

NOTE: When PowerPanelXL panels are suspended from the stud frame the project engineer shall design the frame to support the weight of the PowerPanelXL panels.

Design tip

In order to reduce the load of the upper storey PowerPanelXL panels and make installation easier, the lower storey PowerPanelXL panels should be specified as 2700mm/3300mm in length and the upper storey PowerPanelXL panels as 2400mm in length. The vertical dimensions can be adjusted to suit.

Steel joists or engineered timber joists (≤1% shrinkage)

Lower storey panels are to bear on the slab edge. However, consideration should be given to the sectional size of the lintels over openings on the lower storey. As the details reveal, only a dummy control joint (nominal 10mm packers, backing rod and an external grade acoustic and/or fire rated paintable sealant joint) is required at the horizontal PowerPanelXL junction between the upper and lower panels. The panel support packer should consist of a durable material that will not degrade during the life of the structure.

Movements in the order of 25mm can occur in a two storey timber frame with a timber first floor. The fixing method used in the Hebel PowerPanelXL External Wall System does not allow for this extent of differential movement between the external skin and the timber frame.

The allowances for shrinkage of timber framing in NCC 2016 Vol. 2, by providing gaps between framing and masonry, should be adopted as a minimum.

It is therefore recommended that the upper storey PowerPanelXL panels be installed 35mm clear of the lower storey panels. During construction a temporary packer is used to separate the panels and is then removed after the panels have been fixed. An architectural trim (feature moulding) must be used to hide the horizontal control joint.

The impact of this construction is to load the lower storey frame with the weight of the upper storey panels. In effect, an extra 44kg/m² (for the weight of the upper panels) is being added to the load already carried by the timber frame. The load approximates 1.05kN/m (2.4m wall height).

To simplify the design implications of this extra load, it is recommended to add an extra 1.4m of tributary width for a 90kg/m² tile roof load (for 2.4m upper wall heights) for the design of the lower storey frame and timber lintels, when using AS 1684. – cyclonic or non-cyclonic areas.

Bracing of the building

The walls of the dwelling should be braced using steel cross bracing wherever possible to allow the fixing of the PowerPanelXL panels without the need for additional packing. Ply or sheet bracing should be used on the external wall if the walls are too short for the steel cross bracing (refer AS 1684 – cyclonic or non-cyclonic areas). In this case, the full length of the wall should be sheeted to prevent misalignment of the panels.

Alternatively, localised strips of the sheeting can be fixed to the intermediate studs between the areas of full sheet bracing to maintain the panel alignment. All fixing is only from the outside, except on boundary walls. The extent of the bracing should be determined by the frame designer or project engineer.

NOTE: Minimum screw embedment depth into timber frame must be 25mm.

Table 1.2.7 Comparative wall thicknesses [mm]

<table>
<thead>
<tr>
<th>Wall system</th>
<th>Wall element width</th>
<th>Total width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stud</td>
<td>Cavity</td>
</tr>
<tr>
<td>Brick veneer</td>
<td>70</td>
<td>40</td>
</tr>
<tr>
<td>Hebel PowerPanelXL</td>
<td>70</td>
<td>24 – 35*</td>
</tr>
<tr>
<td>Brick veneer</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>Hebel PowerPanelXL</td>
<td>90</td>
<td>24 – 35*</td>
</tr>
</tbody>
</table>

* NOTE: Depending on top hat selection
1.3 DESIGN & DETAILING CONSIDERATIONS

BUILDING SETOUT

The Hebel PowerPanelXL External Wall System is principally designed for modular construction. The full benefit of savings in time and cost will be fully realised when the construction is designed to suit a 300mm module. In principle, thoughtful setout on the drawing board will minimise the site-cutting of the panels, which is time consuming and wasteful compared to the installation of stock PowerPanelXL panels.

External wall height
Typically the external wall height is the distance from the base of the slab step down up to 50mm above the height of the eaves lining.

Window and door heights should also be considered when determining panel layout. Typically a 300mm distance below or above door or window heights is desirable.

Wall length (horizontal dimensions)
Although not as critical as the wall height, the wall length designed to 300mm dimensions will help reduce waste.

TERMITES
It is the builder’s responsibility to ensure that all council and NCC requirements are fully adhered to in regard to the design of the house for preventing termite attack. The construction details contained in this guide do not attempt to fully address the issues due to the variation of requirements from state to state. Hebel PowerPanelXL is ideally suited to the exposed edge method of perimeter protection. NCC 2016 Vol. 2 Part 3.1.3 deals with termite risk management and the reference code is AS 3660.

FOOTINGS
Footings for Hebel PowerPanelXL should comply with articulated masonry veneer construction as specified in Australian Standard AS 2870. This is a minimum requirement. Local engineering advice should always be sought, especially in areas of highly reactive ground conditions.

MOVEMENT CONTROL JOINTS
During the life cycle of a building, the building and the materials that it is constructed from will move. These movements are due to many factors working together or individually, such as support structure movement (lateral sway or vertical deflection), thermal expansion and contraction and differential movements between materials. This movement, unless relieved or accommodated for, will induce stress in the materials, which may be relieved in the form of cracking. To accommodate these movements and relieve any induced stresses, which could potentially crack the wall, movement joints need to be installed.

Control joints are provided to relieve the induced stresses resulting from thermal expansion or contraction of the AAC, or differential movement between the AAC and another material or structure, such as abutting walls or columns of concrete or brickwork. Control joints can delineate coating shrinkage breaks.

Vertical control joints should coincide with control joints in the supporting structure and anywhere that significant structural movement is expected, where the wall abuts a vertical structure, such as an existing building, or adjacent to large openings. Refer to control joints in construction details section.

This guide proposes minimum widths for the movement joints. The project engineer shall determine if the joints are sufficient to accommodate the movement of the specific project building. Typically, the vertical joint is nominally 10mm wide and filled with an appropriate backing rod and flexible sealant.

IMPORTANT: At all control joints, the top hat should be discontinuous to allow for the effective movement of the building at these locations.

A horizontal control joint is required beneath slabs or angles to accommodate any expected deflection. The magnitude of the deflection must be verified by the building designer. Typically, the horizontal joint is nominally 10mm – 20mm wide and filled with an appropriate external grade acoustic and/or fire rated paintable sealant.
CONDENSATION

Condensation is a complex problem and can occur under a variety of conditions, not just cold conditions. Literature on this subject is available from CSIRO/BRANZ/ASHRAE and must be consulted when building in areas where condensation is likely to occur.

In these cases, the appropriate use of a sarking as a vapor barrier or as thermal insulation, or both, can be effective in controlling condensation.

PENETRATIONS

Small service penetrations through the panel should allow for differential movement between the panel and the service. All penetrations are a potential source for water ingress and should be sealed with an appropriate acoustic and/or fire rated paintable sealant.

WINDOWS

The builder should also ensure that the reveal size is correct to suit PowerPanel®. Refer to Table 1.3.1 for recommendations.

The sizes below typically apply to aluminium framed windows. If timber windows are being used similar tolerances and guidelines apply.

Table 1.3.1 Reveal size

<table>
<thead>
<tr>
<th>Stud size 70mm</th>
<th>Top hat size</th>
<th>Reveal size**</th>
</tr>
</thead>
<tbody>
<tr>
<td>24mm</td>
<td>100mm*</td>
<td></td>
</tr>
<tr>
<td>35mm</td>
<td>115mm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stud size 90mm</th>
<th>Top hat size</th>
<th>Reveal size**</th>
</tr>
</thead>
<tbody>
<tr>
<td>24mm</td>
<td>120mm</td>
<td></td>
</tr>
<tr>
<td>35mm</td>
<td>135mm</td>
<td></td>
</tr>
</tbody>
</table>

*Reveal sizes may vary from one manufacturer to another.
**Figures shown assume brace board is used on framework.

NOTE: The external sealant in the control joints adjacent to windows should be extended to the inside face of the wall, beyond the sealant line of the windows. No gap should exist between both sealants. This sealant configuration is recommended at similar detailing issues.
1.4 SYSTEM COMPONENTS

The PowerPanelXL External Wall System is a complete system and Hebel stocks many of the products and materials required for your convenience.

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>Supplied by CSR Hebel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hebel PowerPanelXL</td>
<td>The core component of the Hebel PowerPanelXL External Wall System is the 75mm thick Hebel PowerPanelXL panel. The panel is manufactured in a range of stock sizes as detailed below:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel weight (kg)</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Weight (kg) at 35% M.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2400</td>
<td>600</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>2550</td>
<td>600</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>2700</td>
<td>600</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>2800</td>
<td>600</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>2850</td>
<td>600</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>600</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>3300</td>
<td>600</td>
<td>80</td>
</tr>
</tbody>
</table>

NOTE A: 75mm PowerPanel 1200 x 600mm weight 37kg. 75mm PowerPanel 1800 x 600mm weight 56kg.

| Top Hat | Hebel Perforated Top Hats are used to fix the Hebel PowerPanelXL panel to the structural support framing. There are two nominal widths available: 24mm and 35mm – incorporating perforated flanges for ease of installation onto external wall frame. |

Fasteners & Fixings	Fixing of top hat to timber stud frame; 12-11x35mm hex head type 17 screw.
	Fixing of top hat to steel framing; 10-16x16mm hex head self drilling screw.
	Fixing of Hebel PowerPanelXL panels to top hat from inside of buildings 14-10x65mm hex head type 17 screw (boundary walls only). Refer to Table 1.2.6.
	Fixing of Hebel PowerPanelXL panels to top hat 14-10x90mm hex head type 17 screw.

NOTE: CSR has engineered and tested the PowerPanelXL External Wall System to comply with the NCC and relevant Australian Standards. It cannot guarantee products and accessories not specified by CSR will perform to these standards. The Product Guarantee will only apply if all components used in the system are specified by CSR.
<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>Supplied by CSR Hebel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hebel Mortar</td>
<td>Hebel Mortar (supplied in 20kg bags) when required is used as a thick bed mortar base to provide a level base for PowerPanelXL installation as well as providing acoustic and fire protection at the base of the panels.</td>
<td>✓</td>
</tr>
<tr>
<td>Hebel Adhesive</td>
<td>Hebel Adhesive (supplied in 20kg bags) is used for gluing the PowerPanelXL panels together at vertical and horizontal joints.</td>
<td>✓</td>
</tr>
<tr>
<td>Hebel Patch</td>
<td>Minor chips or damage to PowerPanelXL panels are to be repaired using Hebel Patch (supplied in 10kg bags).</td>
<td>✓</td>
</tr>
<tr>
<td>Hebel Anti-Corrosion Protection Paint</td>
<td>To coat exposed reinforcement during cutting.</td>
<td>✓</td>
</tr>
</tbody>
</table>
2.1 DURABILITY

OVERVIEW
Durability means the capability of a building or its parts to perform a function over a specified period of time. It is not an inherent property of a material or component. It is the outcome of complex interactions among a number of factors, including:

- The service conditions
- Material characteristics
- Design and detailing
- Workmanship
- Maintenance

The following sub-sections of the durability topic are written in order to provide general guidelines on how best to provide, enhance and maintain adequate durability of Hebel PowerPanelXL panels.

MAINTENANCE & ENHANCEMENT OF DURABILITY
The durability of the Hebel PowerPanelXL External Wall System can be enhanced by periodic inspection and maintenance. Inspections should include examination of the coatings, flashings and sealants. Paint finishes must be maintained in accordance with the manufacturer’s recommendations. Any cracked and damaged finish or sealants, which would allow water ingress, must be repaired immediately by recoating or resealing the effected area. Any damaged flashings or panels must be replaced as for new work.

The durability of the system can also be increased by using Class 4 fixings throughout, additional treatment of steelwork, and by painting all exposed sealants to the sealant manufacturer’s recommendations.

COASTAL AREAS
Hebel PowerPanelXL panels can be used in coastal areas with additional precautions to ensure salt does not build up on the surface of the wall. For buildings which are 1000 metres from a shoreline or large expanse of salt water such as Swan River (west of the Narrows Bridge), Sydney Harbour (east of the Harbour Bridge or Spit Bridge), one of the following is required:

- All horizontal and vertical movement joints must be appropriately caulked; or
- All walls must be sufficiently exposed from above so that rain can perform natural wash-down of the wall; or
- Walls, which are protected by soffits above, must be washed down twice per year, to remove salt and debris build-up, particularly at the joints
- In all cases, Class 4 screws must be used.

HEBEL POWERPANELXL
Hebel PowerPanelXL has many characteristics which make it a very durable product, including:

- Will not rot or burn
- Is not a food source for termites
- Unaffected by sunlight
- Not adversely affected over normal temperature ranges
- One quarter the weight of conventional concrete
- Solid and strong with corrosion protection coated steel reinforcement.
DURABILITY OF COMPONENTS

It is the responsibility of the building designer to ensure that the components such as screws, top hat battens and other steel components have the appropriate corrosion protection to be able to maintain their strength and integrity to suit the required design life of the project.

IMPORTANT: Termite treated timber frames (such as LOSP treated frames) may require sarking to prevent corrosion of steel components. Please refer to frame manufacturer for compatibility. CCA treated pine frames have a deleterious effect on the top hat coatings, which can lead to corrosion. Where timber is CCA treated, provide a barrier between top hat and timber member. Refer to frame manufacturer for compliance with the frames compatibility with steel top hats and screw fixings.

When assessing durability the following documents can be referred to for guidance:

- AS 3566: 2002 – Self drilling screws for the building and construction industries.
- AS 2331 Series.

Reference to AS 3566 should always be adhered to when selecting the screw’s corrosion resistance classification.

WALL FRAMES

Steel frames

The designer needs to ensure that the steelwork and Hebel AAC products have adequate protective systems to ensure that durability is maintained. The durability of the stud frame can be enhanced by the provision of a membrane such as sarking. The manufacturer of the steel stud frame can provide guidance on the appropriateness of this solution on a project-by-project basis.

IMPORTANT: The steel frame requirements outlined in the BCA Vol. 2, Part 3.4.2 should be considered in conjunction with steel frame design and construction advice from the steel frame manufacturer. These requirements consist of minimum protective surface coatings with restrictions on the location of the building and exposure condition of the steel frame.

Timber frames

Information on the durability design of timber structures and components can be obtained from documents such as:

- AS 1720.1 Timber Structures, Part 1: Design Methods
- AS 1684 Timber Framing Code
- State timber framing manuals
- AS 3660 Subterranean Termites.
2.2 FIRE RESISTANCE PERFORMANCE

OVERVIEW
The Hebel PowerPanelXL External Wall System can be subjected to a fire loading as the result of either an external fire source, or an internal fire source. When the wall requires a fire resistance level (FRL) rating, Hebel provides the following guidance:

External fire source
For an external fire source, the excellent fire resistance qualities of the Hebel PowerPanelXL External Wall System protects the structural support framing and provides a high fire resistance level.

NOTE: The FRL rating of the wall can be affected by the penetrations and the method adopted to protect these penetrations. A fire collar with a –/60/60 FRL rating will govern the FRL of the wall, even if the wall configuration has a FRL rating of –/90/90. Where required, the performance of the external coating when subjected to a fire loading shall meet the appropriate performance requirements outlined in the NCC. Joints and gaps need to be appropriately fire rated, e.g. vertical control joint will need fire rated sealant and horizontal joints must be blocked with compressible fire rated material.

Fire certificates and reports
Copies of the test reports and/or opinions can be obtained by contacting Hebel Technical Services. The Hebel PowerPanelXL External Wall System achieves a FRL of 180/180/180.

Internal fire source
For an internal fire source, the studs must be protected by the internal wall linings. Refer to CSR Gyprock Red Book™ for specifications.

External walls in fire – NCC Provisions
Where necessary the designer and builder should ensure the structural support framing, its connections and the Hebel PowerPanelXL installation are satisfactory when subjected to fire conditions. The NCC Vol 2 (Part 3.7.1) outlines provisions for external walls for fire resistance in a residential building where the external wall is less than 900mm from an allotment boundary or 1.8m from another building on the same allotment. If this occurs an FRL of not less than 60/60/60 is required from the outside.

FIRE PERFORMANCE OF HEBEL POWERPANELXL
The Hebel PowerPanelXL External Wall System has been assessed by CSIRO to achieve a Fire Resistance Level (FRL) of 180/180/180. Note, the fire source is considered on the PowerPanelXL side. This enables Hebel PowerPanelXL to be used in the following applications:
- Walls on zero line allotment blocks.
- Multi-storey residential dwellings – external walls.

NOTE: In the above applications, each PowerPanelXL panel should be screwed as specified in this guide, except a minimum of three screws should be installed through the middle top hat into each PowerPanelXL panel.

DESIGN CONSIDERATIONS

Fire stop penetrations
Penetrations through Hebel PowerPanelXL to accommodate pipework, electrical cabling or ductwork will have to be protected (fire stop), to prevent the spread of fire through the penetration. The penetration can be protected with proprietary products such as:
- Fire rated sealants
- Fire collars and intumescent wraps
- Fire rated mortars
- Fire rated pillows
- Fire rated switch boxes.

Hebel recommends contacting the manufacturer to obtain the appropriate product/solution and installation method for the application and wall configuration.
2.3 ENERGY EFFICIENCY

NATIONAL CONSTRUCTION CODE (NCC)
The NCC is available in two volumes which align with two groups of ‘Class of Building’:
- Volume 1 – Class 2 to Class 9 Buildings; and
- Volume 2 – Class 1 & Class 10 Buildings – Housing Provisions.

Each volume presents the Performance Requirements for the efficient use of energy for internal heating and cooling in buildings. The majority of changes have been associated with the Housing Provisions.

The Performance Requirements for energy efficiency ratings are dependent upon the form of construction (i.e. walls or floors), Class of Building, and the type of areas being separated. The performance requirement is a value that is the Total R-Value, which is the cumulative total of the individual R-Values of the building system components.

THE HEBEL POWERPANEL XL EXTERNAL WALL SYSTEM

One of the primary design objectives in planning a building is to provide a cost effective comfortable living / working environment for the building’s inhabitants. Exploiting the inherent thermal mass and insulation qualities of Hebel enables the designer to achieve this objective.

Several international comparative studies have been conducted to investigate the benefits of incorporating AAC walls in place of conventional wall systems. A common trend was the lower heating and cooling energy consumption and smaller mechanical equipment required to maintain a comfortable living environment, especially with regards to regions of mainly cold weather. The excellent performance was the result of the three characteristics – thermal mass, thermal insulation and the air tightness of the construction.

The level of insulation provided in a wall is determined by the required Total R-Value. The higher the required Total R-Value the greater the insulation provided. Hebel PowerPanel XL External Wall System incorporating CSR Bradford insulation can provide the R-Value ratings outlined in Table 2.3.4.

THERMAL INSULATION

It is recommended that insulation materials be installed to enhance thermal insulation properties and occupant comfort. Insulation also improves the acoustic performance of the wall against outside noise.

The NCC provides Deemed-to-Satisfy Provisions for compliance and installation of the various types of insulation. The insulation should be installed with Hebel PowerPanel XL such that it forms a continuous barrier to contribute to the thermal barrier. All insulation installed in Hebel PowerPanel XL External Wall systems must comply with: AS/NZS 4859.1; or AS 2464.3 for loose fill insulation.

AIR TIGHTNESS

The thermal performance can be influenced by many factors. Most of these are related to the design decisions and properties of the adopted materials. Construction practices can also significantly affect the performance with poor sealing, resulting in drafts. The tight construction tolerances of AAC provide a wall with low air infiltration rate. Testing at the CSIRO (Test Report DTM327) on Hebel blockwork with thin bed adhesive joints has determined an air infiltration rate of 0.3L/s (0.014% of internal volume). For PowerPanel XL panels having fewer thin bed adhesive joints, a rate less than this could be achieved.

SARKING

As well as controlling condensation and acting as an air barrier, sarking can be used to significantly improve the thermal insulation and energy efficiency performance of a building solution. Sarking layers can alter the performance of the cavity by providing a reflection side. The design of the sarking arrangement is complex and should be performed by the appropriate project consultant.

Where the sarking layer provides a weatherproofing function, the sarking material must comply with AS/NZS 4200 Parts 1 and 2.
The following tables show the performance levels required for walls and floors under the NCC and the thermal performance of the Hebel PowerPanelXL External Wall System.

Figure 2.3.1 Climate zones for thermal design

<table>
<thead>
<tr>
<th>Climate Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 300metres</td>
<td>Summer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above 300metres</td>
<td></td>
<td>Winter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 1-10,2,3,4,9c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 5,6,7,8,9a,9b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 1-10</td>
<td>Summer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Winter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 2,3,4,5,6,7,8,9a,9b,9c</td>
<td>Summer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Winter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.3.2 Low-rise multi-residential buildings

<table>
<thead>
<tr>
<th>Climate Zone</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, 4 and 5</td>
<td>(a) (i) Achieve a minimum Total R-Value of 2.8.</td>
</tr>
<tr>
<td></td>
<td>(b) (i) Achieve a minimum Total R-Value of 2.4; and</td>
</tr>
<tr>
<td></td>
<td>(ii) Shade the external wall of the storey with a verandah, balcony, eaves, carport or the like, which projects at a minimum angle of 15 degrees in accordance with Figure 3.12.1.2. of NCC 2016</td>
</tr>
<tr>
<td>6 and 7</td>
<td>Achieve a minimum Total R-Value of 2.8.</td>
</tr>
<tr>
<td>8</td>
<td>Achieve a minimum Total R-Value of 3.8.</td>
</tr>
</tbody>
</table>

Table 2.3.3 Comparison of thermal properties

<table>
<thead>
<tr>
<th>Products</th>
<th>R- Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibre Cement 6mm</td>
<td>0.03</td>
</tr>
<tr>
<td>Brick 110mm</td>
<td>0.18</td>
</tr>
<tr>
<td>Hebel PowerPanel<sup>XL</sup></td>
<td>0.52 (based on 8.15% moisture content)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Systems</th>
<th>R- Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick veneer (double sided reflective foil)</td>
<td>1.77</td>
</tr>
<tr>
<td>HEB1705 (double sided reflective foil)</td>
<td>2.22</td>
</tr>
</tbody>
</table>

NOTES:
- Sarking or insulation to be added to the above values where applicable to comply with NCC climate zone requirements.
- R-Values above (excluding Hebel PowerPanel^{XL} solution) are taken from NCC 2016.
- Refer to Table 2.3.4 for Hebel PowerPanel^{XL} configuration and thermal insulation options.
- R-Values provided for brick veneer have been provided by James Fricker calculation 10750 dated July, 2010.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Total R, m².K/W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Winter</td>
</tr>
<tr>
<td>HEB1700</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Single Foil, 70mm Stud, 24mm Cavity, 10mm Plasterboard</td>
<td>R1.75</td>
</tr>
<tr>
<td>HEB1701</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Single Foil, 90mm Stud, 24mm Cavity, 10mm Plasterboard</td>
<td>R1.79</td>
</tr>
<tr>
<td>HEB1702</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Single Foil + R2.0 Batt, 70mm Stud, 24mm Cavity, 10mm Plasterboard</td>
<td>R2.84</td>
</tr>
<tr>
<td>HEB1703</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Single Foil + R2.0 Batt, 90mm Stud, 24mm Cavity, 10mm Plasterboard</td>
<td>R3.11</td>
</tr>
<tr>
<td>HEB1704</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Double Foil, 70mm Stud, 24mm Cavity, 10mm Plasterboard</td>
<td>R2.16</td>
</tr>
<tr>
<td>HEB1705</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Double Foil, 90mm Stud, 24mm Cavity, 10mm Plasterboard</td>
<td>R2.22</td>
</tr>
<tr>
<td>HEB1706</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Double Foil + R2.0 Batt, 70mm Stud, 24mm Cavity, 10mm Plasterboard</td>
<td>R3.25</td>
</tr>
<tr>
<td>HEB1707</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Double Foil + R2.0 Batt, 90mm Stud, 24mm Cavity, 10mm Plasterboard</td>
<td>R3.52</td>
</tr>
<tr>
<td>HEB1708</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Single Foil, 70mm Stud, 35mm Cavity, 10mm Plasterboard</td>
<td>R1.75</td>
</tr>
<tr>
<td>HEB1709</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Single Foil, 90mm Stud, 35mm Cavity, 10mm Plasterboard</td>
<td>R1.80</td>
</tr>
<tr>
<td>HEB1710</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Single Foil + R2.0 Batt, 70mm Stud, 35mm Cavity, 10mm Plasterboard</td>
<td>R2.85</td>
</tr>
<tr>
<td>HEB1711</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Single Foil + R2.0 Batt, 90mm Stud, 35mm Cavity, 10mm Plasterboard</td>
<td>R3.12</td>
</tr>
<tr>
<td>HEB1712</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Double Foil, 70mm Stud, 35mm Cavity, 10mm Plasterboard</td>
<td>R2.20</td>
</tr>
<tr>
<td>HEB1713</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Double Foil, 90mm Stud, 35mm Cavity, 10mm Plasterboard</td>
<td>R2.26</td>
</tr>
<tr>
<td>HEB1714</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Double Foil + R2.0 Batt, 70mm Stud, 35mm Cavity, 10mm Plasterboard</td>
<td>R3.29</td>
</tr>
<tr>
<td>HEB1715</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Double Foil + R2.0 Batt, 90mm Stud, 35mm Cavity, 10mm Plasterboard</td>
<td>R3.57</td>
</tr>
</tbody>
</table>

NOTES:
- Single Foil = Single sided reflective foil
- Double Foil = Double sided reflective foil

NOTES:
- Refer to NCC for state & territory variations.
- Refer to NCC for alternative means of satisfying the required performance levels.
- Refer to CSR Bradford product literature for design & installation requirements for the nominated reflective foil laminates and insulation.
- Stated R-values in Tables 2.3.3 and 2.3.4 have been provided by J. Fricker calculations 107W1400-107W1415.
2.4 SOUND TRANSMISSION & INSULATION

OVERVIEW

Current NCC sound transmission and insulation requirements

The Hebel PowerPanelXL® External Wall System is primarily used in buildings that have a domestic type of activity purpose. The NCC generally classifies these buildings into Class 1 or 10. The acoustic performance requirements for external walls in these buildings or their building elements are not currently stated in the NCC. If a building using the Hebel PowerPanelXL External Wall System was required to provide acoustic performance, then the performance level requirements for a building envelope and elements would be set by the relevant authorities (i.e. local councils, client specific requirements, etc).

Design recommendations

Acoustic design is a complex science and there will be instances where a specialist acoustic consultant is required.

For walls requiring acoustic performance Hebel recommends:

1. Engaging a reputable acoustic consultant on a project-by-project basis to provide design advice and installation inspections
2. When selecting the appropriate components for the Hebel PowerPanelXL External Wall System, the designer or specifier must be aware that the laboratory R_w values are almost always higher than the field measured values. Therefore, allowances should be made for the lower expected field values during the selection of the system
3. Separate advice from a specialist acoustic consultant should be sought to determine the effect on acoustic performance due to any changes to the Hebel PowerPanelXL External Wall System, and any required modification of the installation details pertaining to the systems
4. Increasing cavity widths, using higher density or thicker insulation or plasterboard, will generally maintain or increase the acoustic performance of the Hebel PowerPanelXL External Wall System.

Table 2.4.1 Acoustic performance of PowerPanelXL® external wall systems

<table>
<thead>
<tr>
<th>Wall System</th>
<th>Description</th>
<th>R_w</th>
<th>$R_w + Ctr$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerPanelXL®</td>
<td>10mm plasterboard</td>
<td>46</td>
<td>39</td>
</tr>
<tr>
<td>Configuration 1</td>
<td>90mm timber stud</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R1.5 Bradford Glasswool Batts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35mm Hebel Top Hat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75mm PowerPanelXL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PowerPanelXL®</td>
<td>10mm plasterboard</td>
<td>41</td>
<td>35</td>
</tr>
<tr>
<td>Configuration 2</td>
<td>90mm timber stud</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bradford Enviroseal (single side reflective foil)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35mm Hebel Top Hat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75mm PowerPanelXL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PowerPanelXL®</td>
<td>10mm plasterboard</td>
<td>46</td>
<td>39</td>
</tr>
<tr>
<td>Configuration 3</td>
<td>90mm timber stud</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R1.5 Bradford Glasswool Batts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bradford Enviroseal (single side reflective foil)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35mm Hebel Top Hat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75mm PowerPanelXL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hebel PowerPanelXL panels require an appropriate external coating system and sealant detailing to ensure a water resistant and vapor permeable building envelope is achieved.

Generally, the external face of the Hebel PowerPanelXL panel is coated with a high build acrylic levelling and finishing system incorporating a water resistant flexible ‘elastomeric membrane’ top coat, in accordance with the recommendations of the coating manufacturer.

Hebel has worked closely with Dulux AcraTex to develop a range of performance warranted coating systems for all Hebel systems.

PERFORMANCE REQUIREMENTS

The following are items to be considered when selecting a coating system:

Manufacturer approved:
- Hebel recommends in all cases the preferred use of Dulux AcraTex coatings systems defined within this document.

NOTE: Where other manufacturer’s coating systems are applied to Hebel external walls these coatings systems must be warranted by the coating manufacturer as appropriate for coating an AAC substrate. As a minimum, alternate manufacturers must verify and warrant coating system conformance to the properties defined below.

Surface adhesion:
- The substrate preparation and coating application should be in accordance with the coating manufacturer’s specification.

Before applying finishes in coastal areas (refer to definition), all PowerPanelXL panels must be thoroughly washed with fresh water to remove any salt residue. Refer to coating manufacturer for additional requirements.

Water resistance:
- The primary objective of the coating system is to prevent water ingress through it, yet allow vapor in and out of the AAC substrate.

- Proven water resistance capability: Transmission: <10 grams/m²/24hr/1kPa

Water vapor permeability:
- For a coating to allow the ‘escape’ of water vapor, the coating must be vapor permeable.
- The coating system should comply with the following performance parameters:

\[
 w \cdot s_d \leq 0.2 \text{ kg} / (\text{m}^2 \cdot \text{h}^{0.5}) \quad \text{where,}
\]

- Coefficient of water absorption

\[
 w \leq 0.5 \text{ kg} / (\text{m}^2 \cdot \text{h}^{0.5})
\]

- Equivalent air layer thickness of water vapor diffusion \(S_d \leq 2 \text{ m} \).

NOTES:
- A coefficient of water absorption \((w \leq 0.5)\) means that minimal dampness is absorbed regardless of the time factor.
- A coating with an \((S_d \leq 2 \text{ m})\) has less resistance to water vapor diffusion (escape) than a static 2m thick air layer.

Compatibility:
- Ensure the coating system is compatible with the substrate and construction system components, ie:

- Coatings may not adhere to silicone or other sealants and mastics
- Excessive joint adhesive or mortars smears across the panel face may require removal or specific primers.

Durability:
- The coating must be durable and not deteriorate with exposure to light (UV) and weather.

Elasticity:
- The coating must be able to bridge a 1mm minimum crack width
- The coating manufacturer can specify the minimum design specification (thickness), so that the coating is serviceable and durable.

IMPORTANT: This list of performance requirements indicates that a specific fit-for-purpose coating system must be adopted, and that a simple paint coating would most likely be an inadequate coating system. Variations to the coating system must be approved and warranted by the coating system manufacturer or representative.
COATING

Dulux AcraTex coatings have been specifically formulated and engineered to match the thermal and physical characteristics that are unique to Hebel AAC.

Easy to work with, Dulux AcraTex coatings are designed to help you achieve the perfect finish to any Hebel project, including the highly sought after smooth, monolithic look.

Given the variability of some coatings – not all are what they claim to be – customers can be confident that when they choose Dulux AcraTex coating systems they have been correctly formulated to a consistent, durable formulation backed by Dulux. Hebel does not recommend cement based so called ‘acrylic prepacked’ renders or site mixed cement renders be applied to Hebel PowerPanelXL.

Dulux AcraTex coating systems have been formulated with unique acrylic polymer resins incorporating specially graded fillers and selected additives to enhance the application and workability of the mix, ensuring a consistent durable performance finishing system to the Hebel external walls.

Dulux AcraTex coating systems have many advantages over traditional cement based site mixed or prepacked renders and coatings systems:
- Increased flexibility
- Improved adhesion to Hebel substrate
- Matches thermal properties of Hebel substrate
- Faster curing
- Improved crack joint resistance
- Peace of mind – warranted performance

Suitable coating system over PowerPanelXL panels include:
- 1st Coat: Dulux AcraTex RenderWall FR Float Finish
- 2nd Coat: Dulux AcraTex Coventry Coarse Sand Finish
- 3rd Coat: Dulux AcraTex AcraShield

SEALANTS

All control joints must be sealed with a suitable external grade acoustic and/or fire rated paintable sealant. All gaps between the PowerPanelXL panels and framing around windows must be caulked with an appropriate external grade sealant.

The sealant should be installed in accordance with the sealant manufacturer’s specifications.

WALL FLASHINGS

In general, flashings shall be designed and installed in accordance with SAA-HB39 1997 – Installation Code for Metal Roofing and Wall Cladding.

WALL WRAP

For Hebel PowerPanelXL, wall wrap is only required for insulation and condensation control as well as a corrosion barrier over CCA treated timber frames. Although not a mandatory requirement, the installation of wall wrap is considered good building practice. Wall wrap must be designed and installed in accordance with AS/NZS 4200 Part 1 – Materials and Part 2 – Installation.
3.1 INSTALLATION SEQUENCE

1. Frames and trusses complete

2. Install DPC
 - Fix to bottom plate
 - Cover rebate completely
 - Overlap DPC at corners
 - Install sarking as specified
 - Refer to Tables 1.2.1 and 1.2.4

3. Fix top hats
 - Check number of top hats required
 - Number of screws as per Tables 1.2.2, 1.2.3 and 1.2.5
 - Install top hats below and above openings
 - Ensure top hats are discontinuous at control joints

4. Install Hebel PowerPanelXL panels
 - Corner PowerPanelXL installed first
 - Number of screws as per Tables 1.2.2, 1.2.3 and 1.2.5
 - Hebel Adhesive to vertical joints
 - Site cutting to suit
 - Coating of exposed reinforcement
 - Check control joint layout
 - Minimum panel width 270mm

5. Coating
 - As per specification detail shown in coating requirements.
3.2 TOOLS AND EQUIPMENT

The basic tools required to assist in the installation of the PowerPanelXL External Wall System are shown in Figure 3.2.1. These may be purchased through a Hebel distributor and include:

1. **Stirrer** – fitted to the electric drill, the stirrer is used to mix the Hebel Mortar, Hebel Adhesive and base levelling coat render inside the mixing bucket

2. **Notched trowel** – the notched trowel is used to apply the Hebel Adhesive to the Hebel surfaces. The width of the trowel must match the panel thickness to ensure the adhesive is applied with full and even coverage

3. **Panel lifters** – used to carry the panels around the work site

4. **Sand float** – used to remove excess Hebel Adhesive and smooth joints between panels

5. **Levelling plane** – used to even out inconsistencies in the Hebel panels.

Extra equipment will also be required and includes the following:

- Power drill (clutch driven)
- Power saw with metal or diamond tipped cutting blades
- Dust extraction system
- Sockets for screws
- Personal Protective Equipment (PPE) such as goggles, ear muffs/plugs and face mask used when site cutting the PowerPanelXL panels.

Figure 3.2.1 Hebel tools

3.3 INSTALLATION OF SERVICES

The installation of services in the building are the same as the methods currently being used throughout the industry. Services should be installed through the frame to avoid interfering with top hat layout, but if they are to be fixed on the outside of the frame, they should only run horizontally parallel to the top hats – typically 300mm up from the bottom plate.

Penetrations through the PowerPanelXL panel for services should be neatly filled and the joint sealed with an external grade acoustic and/or fire rated paintable sealant.

Figure 3.3.1 Installed piping services prior to the installation of Hebel PowerPanelXL

Figure 3.3.2 Neat finishes of installed services
3.4 CONSTRUCTION DETAILS – OVERVIEW

<table>
<thead>
<tr>
<th>Table 3.4.1 Construction details overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single storey construction details</td>
</tr>
<tr>
<td>Isometric view detail panel supported at base</td>
</tr>
<tr>
<td>Isometric view detail panel suspended</td>
</tr>
<tr>
<td>Hip roof elevation</td>
</tr>
<tr>
<td>Gable end elevation</td>
</tr>
<tr>
<td>Typical section detail</td>
</tr>
<tr>
<td>High wall section detail (3900mm max.)</td>
</tr>
<tr>
<td>Two storey construction details</td>
</tr>
<tr>
<td>Isometric view detail</td>
</tr>
<tr>
<td>Hip roof elevation</td>
</tr>
<tr>
<td>Gable end elevation</td>
</tr>
<tr>
<td>Typical timber frame section using joists with >1% shrinkage</td>
</tr>
<tr>
<td>Steel frame section or engineered joists with ≤1% shrinkage</td>
</tr>
<tr>
<td>Two storey addition details</td>
</tr>
<tr>
<td>Typical section with brick veneer below</td>
</tr>
<tr>
<td>Typical section with double brick below</td>
</tr>
<tr>
<td>Fixing & installation detail</td>
</tr>
<tr>
<td>Hebel PowerPanelXL External Wall System fixing detail</td>
</tr>
<tr>
<td>Hebel PowerPanelXL Boundary Wall system fixing detail</td>
</tr>
<tr>
<td>Screw layout drawing</td>
</tr>
<tr>
<td>Footing junction details</td>
</tr>
<tr>
<td>Junction to shallow concrete footing</td>
</tr>
<tr>
<td>Junction to deep concrete edge beam</td>
</tr>
<tr>
<td>Junction to masonry earth-retaining wall</td>
</tr>
<tr>
<td>Junction to masonry dwarf wall</td>
</tr>
<tr>
<td>Junction to existing piers/stumps</td>
</tr>
<tr>
<td>Junction to shallow concrete edge beam</td>
</tr>
<tr>
<td>Base detail suspended floor – pier connection</td>
</tr>
<tr>
<td>Wall junction details & sections</td>
</tr>
<tr>
<td>Typical roof eaves detail – Option 1</td>
</tr>
<tr>
<td>Typical roof eaves detail – Option 2</td>
</tr>
<tr>
<td>Roof to wall junction detail – Option 1</td>
</tr>
<tr>
<td>Roof to wall junction detail – Option 2</td>
</tr>
<tr>
<td>Balcony detail</td>
</tr>
<tr>
<td>Parapet capping</td>
</tr>
<tr>
<td>Beam penetration detail</td>
</tr>
<tr>
<td>Gable end wall detail</td>
</tr>
<tr>
<td>Gable end wall detail – lintel panel over window</td>
</tr>
<tr>
<td>Column detail (glued and screwed)</td>
</tr>
</tbody>
</table>
Control joint details

<table>
<thead>
<tr>
<th>Description</th>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal corner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External corner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical detail for control joints positioned on corner</td>
<td>3.5.7.2</td>
<td>42</td>
</tr>
<tr>
<td>Typical detail for control joints positioned away from a corner</td>
<td>3.5.7.3</td>
<td>43</td>
</tr>
<tr>
<td>Typical horizontal control joint – timber stud frame using joists with >1% shrinkage</td>
<td>3.5.7.4</td>
<td>44</td>
</tr>
<tr>
<td>Typical horizontal control joint steel stud frame or engineered timber joists ≤1% shrinkage</td>
<td>3.5.7.5</td>
<td>44</td>
</tr>
<tr>
<td>Horizontal control joint – cavity brickwork to Hebel PowerPanel™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal control joint – brick veneer to Hebel PowerPanel™</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical vertical control joint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical vertical control joint with double studs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control joint – discontinuous top hats on a single stud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical window control joint detail – lintel over</td>
<td>3.5.7.9</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Door & window details

<table>
<thead>
<tr>
<th>Description</th>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical window sill detail – aluminium window frame – Option 1</td>
<td>3.5.8.1</td>
<td>46</td>
</tr>
<tr>
<td>Typical window sill detail – aluminium window frame – Option 2</td>
<td>3.5.8.2</td>
<td>46</td>
</tr>
<tr>
<td>Typical window sill detail – aluminium window frame – Option 3</td>
<td>3.5.8.3</td>
<td>46</td>
</tr>
<tr>
<td>Header detail</td>
<td>3.5.8.4</td>
<td>46</td>
</tr>
<tr>
<td>Garage head detail</td>
<td>3.5.8.5</td>
<td>46</td>
</tr>
<tr>
<td>Garage door – jamb detail – Option 1</td>
<td>3.5.8.6</td>
<td>46</td>
</tr>
<tr>
<td>Garage door – jamb detail – Option 2</td>
<td>3.5.8.7</td>
<td>46</td>
</tr>
<tr>
<td>Sliding door sill detail – Option 1 – Concrete sill < 270mm</td>
<td>3.5.8.8</td>
<td>47</td>
</tr>
<tr>
<td>Sliding door sill detail – section view – PowerPanel™ sill > 270mm</td>
<td>3.5.8.9</td>
<td>47</td>
</tr>
<tr>
<td>Miscelesasr detail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel layout drawing – Plan view</td>
<td>3.5.9.1</td>
<td>48</td>
</tr>
</tbody>
</table>

Project specific requirements: please contact CSR Hebel for advice on any project specific designs not covered in this Design and Installation Guide.
3.5 CONSTRUCTION DETAILS

3.5.1 SINGLE STOREY CONSTRUCTION DETAILS

Figure 3.5.1.1 Single storey construction – isometric view detail panel supported at base

Figure 3.5.1.2 Single storey construction – isometric view detail panel suspended
NOTES:
1. Number of top hats and top hat spacing to be confirmed by the building designer.
2. Additional top hats may be required, for suspended panels. Refer to Table 1.2.4 of this guide.
3. These details have not shown the set-out of top hats to accommodate control joint locations. This is the responsibility of the building designer.
This slab edge detail does not comply with the termite visible inspection zone requirements. Alternate termite management systems must be used when selecting this detail. It is the responsibility of the builder to provide a suitable physical or chemical barrier in accordance with AS 3660.

Penetrations through Hebel PowerPanel™ for services should be neatly drilled and the joint sealed with an external grade acoustic and/or fire rated paintable sealant.

Refer to Figure 3.5.6.2

Top hat section
Top hat gap to panel, typical
Top of window or external doors

Penetrations through Hebel PowerPanel™ for services should be neatly drilled and the joint sealed with an external grade acoustic and/or fire rated paintable sealant.

Reinforced fibreglass mesh embedded in base levelling coat

Hebel Adhesive in joint

Reinforced concrete slab
Reinforced concrete footing

Refer to footing junction section for alternative footing details

Top hat gap to panel, typical

Penetrations through Hebel PowerPanel™ for services should be neatly drilled and the joint sealed with an external grade acoustic and/or fire rated paintable sealant.

Reinforced fibreglass mesh embedded in base levelling coat

Reinforced concrete slab
Reinforced concrete footing

Distance to satisfy relevant authority requirements

Refer to Figure 3.5.1.5 Single storey construction – typical section detail

Figure 3.5.1.5 Single storey construction – typical section detail

Figure 3.5.1.6 Single storey construction – high wall section detail (3900mm max.)

Refer to Figure 3.5.1.6 Single storey construction – high wall section detail (3900mm max.)

Penetrations through Hebel PowerPanel™ for services should be neatly drilled and the joint sealed with an external grade acoustic and/or fire rated paintable sealant.

Reinforced fibreglass mesh embedded in base levelling coat

Reinforced concrete slab
Reinforced concrete footing

Refer to footing junction section for alternative footing details

Top hat gap to panel, typical

Penetrations through Hebel PowerPanel™ for services should be neatly drilled and the joint sealed with an external grade acoustic and/or fire rated paintable sealant.

Reinforced fibreglass mesh embedded in base levelling coat

Reinforced concrete slab
Reinforced concrete footing

Distance to satisfy relevant authority requirements

Refer to Figure 3.5.1.6 Single storey construction – high wall section detail (3900mm max.)
3.5.2 TWO STOREY CONSTRUCTION DETAILS

Figure 3.5.2.1 Two storey construction – isometric view detail

[Diagram showing two storey construction details, including Top hat Hebel PowerPanel® panels]
NOTES:
1. Number of top hats and top hat spacing to be confirmed by the building designer.
2. Additional top hats may be required, for suspended panels. Refer to Table 1.2.4 of this guide.
3. These details have not shown set-out of top hats to accommodate control joint locations. This is the responsibility of the building designer.
4. Frame design of lower floor to allow for extra load on wall from upper floor PowerPanelXL panels.
5. Minimum four horizontal top hats required for upper floor PowerPanelXL panels.
NOTE:
1. These gap widths can be reduced for low shrinkage floor systems. Contact the floor system manufacturer for guidance on acceptable gap width. Refer also to NCC 2016 Vol. 2 and AS 1684.

Table 3.5.2.1 Minimum deflection gap

<table>
<thead>
<tr>
<th>TYPICAL GUIDE</th>
<th>Deflection gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timber floor/frame</td>
<td></td>
</tr>
<tr>
<td>Seasoned/Unseasoned</td>
<td>35mm minimum</td>
</tr>
</tbody>
</table>

Figure 3.5.2.4 Two storey construction – typical timber frame section using joists with >1% shrinkage

Figure 3.5.2.5 Two storey construction – steel frame section or engineered joists with ≤1% shrinkage
3.5.3 TWO STOREY ADDITION DETAILS
NOTES:
1. These gap widths can be reduced for low shrinkage floor systems. Contact the floor system manufacturer for guidance on acceptable gap width. Refer also to NCC 2016 Vol. 2 and AS 1684.
2. Minimum 4 top hats required for panels that are suspended off the frame. Refer to Table 1.2.4 of this guide.

Table 3.5.3.1 Minimum deflection gap

<table>
<thead>
<tr>
<th>TYPICAL GUIDE</th>
<th>Deflection gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timber floor/frame</td>
<td></td>
</tr>
<tr>
<td>Seasoned/Unseasoned</td>
<td>35mm minimum</td>
</tr>
</tbody>
</table>
3.5.4 FIXING & INSTALLATION DETAIL

NOTE:
When positioning the stud frames allow 5-7mm extra cavity width for the sheet bracing between top hat and timber stud.

Contact Hebel Technical Services for internal fix boundary line details.
3.5.5 FOOTING JUNCTION DETAILS

NOTES:
1. Do not fix top hat to floor joists.
2. If non-shrink floor joists are used, gap may be reduced or eliminated. Seek further technical advice from the framing manufacturer.
3. Refer to CSR Hebel for Hebel PowerFloor™ details.
4. Refer AS 3660 for termite protection.
5. When fixing top hats to concrete, contact the fixing manufacturer for details.
NOTES:
1. Refer to Tables 1.2.3 to 1.2.5 for top hat requirement for suspended applications
2. This detail is not considered to achieve a fire rating level
3. This slab edge detail does not comply with the termite visible inspection zone requirements. Alternate termite management systems must be used when selecting this detail. It is the responsibility of the builder to provide a suitable physical or chemical barrier in accordance with AS 3660.

NOTES:
1. All garden beds and/or finished soil line must remain a minimum of 75mm below the bottom of the finished rendered wall.
2. This slab edge detail does not comply with the termite visible inspection zone requirements. Alternate termite management systems must be used when selecting this detail. It is the responsibility of the builder to provide a suitable physical or chemical barrier in accordance with AS 3660.
3.5.6 WALL JUNCTION DETAILS & SECTIONS

Figure 3.5.6.1 Typical roof eaves detail - Option 1

- External frame
- Backing rod
- Hebel render system to specification
- Wall wrap (optional)
- Paintable external grade sealant

Figure 3.5.6.2 Typical roof eaves detail - Option 2

- External frame
- Hebel render system to specification
- Wall wrap (optional)
- Quad or similar
- Nominal 50mm

Figure 3.5.6.3 Roof to wall junction detail – Option 1

- Hebel PowerPanelXL
- Flashing to project specification
- Wall frame
- 10mm min. deflection gap

Figure 3.5.6.4 – Roof to wall junction detail – Option 2

- Hebel PowerPanelXL
- Flashing to project specification
- DPC
- 30mm nominal offset from top hat
- Wall frame
- 10mm min. deflection gap

Figure 3.5.6.5 Balcony detail

- Flashing
- Hebel PowerPanelXL
- Stud frame
- Joist
- Waterproof membrane over floor and continue up angle (50-75 mm Galvanised or PVC angle (aposey primer to be used over gal), then acrylic waterproof membrane)

Apply Fulparee 303 to angle before screw fixing
Timber support
Hebel
PowerPanelXL
Wall wrap to be installed between timber frame and fibre cement sheet to manufacturers details.

Wall wrap to be installed to hebel side of stud frame (optional) to manufacturers details.

Figure 3.5.6.8 Gable end wall detail

Figure 3.5.6.9 Gable end wall detail – lintel panel over window

NOTE
Parapet capping shall be designed and fastened in accordance with SAA – HB92 2015 – Installation Code for Metal Roofing and Wall Cladding. Stop ends shall be incorporated to all flashings.

Figure 3.5.6.7 Beam penetration detail

Beam penetration through wall
Hebel PowerPanelXL
10mm gap to allow for movement, filled with external grade acoustic and/or fire rated paintable sealant

Beam penetration through wall
Hebel PowerPanelXL
10mm gap to allow for movement, filled with external grade acoustic and/or fire rated paintable sealant

NOTE
Parapet capping shall be designed and fastened in accordance with SAA – HB92 2015 – Installation Code for Metal Roofing and Wall Cladding. Stop ends shall be incorporated to all flashings.
Screws fixed at 600mm centres using No.14-10 x 150mm hex head type 17 screws.

90mm x 90mm timber support post, only one post required.

75mm Hebel PowerPanel

Top hat

Mesh embedded in texture coat

14-10x90mm hex head type 17 screws

Glue to all joints

Figure 3.5.6.10 Column detail (glued and screwed)
3.5.7 CONTROL JOINTS

The following information provides the necessary rules for control jointing when installing the Hebel PowerPanelXL External Wall System:

- Vertical control joints required at maximum 6m centres
- Vertical control joints required at external and internal corners
- Vertical control joints required above and below all doors, including sliding and garage doors
- Horizontal control joints required at every horizontal floor junction
- Horizontal control joints required at a maximum height of 3.9m.

For openings < 2450mm in width

- Control joint not required. If the straight joint that extends above or below the window jamb is less than 600mm long, a control joint or a glued and meshed joint is required.

For openings ≥ 2450mm and < 3600mm wide

- Control joint required to at least one side of the opening (i.e. above and below the opening). If the straight joint that extends above or below the window jamb is less than 600mm long a control joint or a glued and meshed joint is required to the opposite side of the opening.

For openings ≥ 3600mm in width

- Control joint required to both sides of the opening (i.e. above and below the opening).

NOTES:
1. The minimum lintel panel height above windows is 270mm.
2. Footing and slab design to comply with AS 2870.
75mm Hebel PowerPanel®

Nominal 10mm control joint

Corner panel joint to be fully glued with Hebel Adhesive

Panel joint to be fully glued with Hebel Adhesive

No.14-10x150mm hex head type T7 screws at 600mm centres

Note: Control joint to be located at opening if within this 1200mm region

INSTALLATION DETAIL

Figure 3.5.7.3 Typical detail for control joints positioned on corner

Figure 3.5.7.4 Typical detail for control joints positioned away from a corner
Figure 3.5.7.11 Control joint – discontinuous top hats on a single stud

Figure 3.5.7.12 – Typical window control joint detail – lintel over

NOTE:
The installation sequence of the PowerPanelXL panels around the openings should be followed as numbered if there is no control joint at the opening, to maintain glue thickness on the edge of the panel.
3.5.8 DOOR & WINDOW DETAIL

Figure 3.5.8.1 Typical window sill detail – aluminium window frame – Option 1

- Remove rubber weather strip and install external grade sealant between bottom of window and sill panel.
- Allow a nominal 10mm gap for frame shrinkage or as required by project engineer.
- Glue and screw using No. 14-10x150mm hex head type 17 screw.

Figure 3.5.8.2 Typical window sill detail – aluminium window frame – Option 2

- Remove rubber weather strip and install external grade sealant between bottom of window and sill panel.
- Allow a nominal 10mm gap for frame shrinkage or as required by project engineer.
- Sill block (glue and screw using Hebel Adhesive Joint and No. 14–10x150mm hex head type 17 screw).

Figure 3.5.8.3 Typical window sill detail – aluminium window frame – Option 3

- Remove rubber weather strip and install external grade sealant between bottom of window and sill panel.
- Allow a nominal 10mm gap for frame shrinkage or as required by project engineer.
- Glue and screw using Hebel PowerPanel® using liquid nails or equivalent.

Figure 3.5.8.4 Header detail

- Nail fibre cement to timber and screw.
- Install wall wrap around first stud in direct contact with the fibre cement.

Figure 3.5.8.5 Garage head detail

- Nail fibre cement to timber and screw.
- Install wall wrap around first stud in direct contact with the fibre cement.

Figure 3.5.8.6 Garage door – jamb detail – Option 1

- Screw and glue to Hebel Adhesive Joint using liquid nails or equivalent.

Figure 3.5.8.7 Garage door – jamb detail – Option 2

- Screw and glue to Hebel PowerPanel® using liquid nails or equivalent.

- NOTE: Include suitable backing rod and sealant for 5-10mm gaps.

- NOTE: Drainage of window and door sills, in either aluminium or timber, should be directed to the outside of the building, on top of the window sill.

- NOTE: Include suitable backing rod and sealant for 5-10mm gaps.

- NOTE: Include suitable backing rod and sealant for 5-10mm gaps.
Poured concrete

Less than 270mm

Hebel PowerPanelXL

Nominal 10mm control joint at corner, fill with external grade acoustic and/or fire rated paintable sealant

Return external grade acoustic and/or fire rated paintable sealant to inside surface of Hebel PowerPanelXL (beyond sliding door frame)

Nominal 10mm control joint at corner, fill with external grade acoustic and/or fire rated paintable sealant

Floating Top Hat fixed to side panels using panel screws

Pack top hat (if required) to prevent Top Hat deflection inwards

Nominal 10mm dummy joint

Figure 3.5.8.8 Sliding door sill detail – Option 1 – Concrete sill < 270mm

Figure 3.5.8.9 – Sliding door sill detail – section view – PowerPanelXL sill > 270mm
3.5.9 MISCELLANEOUS DETAIL

NOTES:
1. At corners, PowerPanel XL panels can be laid out at 300mm multiples in one direction and 300mm multiples + 85mm in the other direction.
2. Width of PowerPanel XL panels may vary + or - 1.5mm.

Figure 3.5.9.1 – Panel layout drawing – Plan view

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SIZE</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>600 wide full height</td>
<td>47</td>
</tr>
<tr>
<td>B</td>
<td>300 wide full height</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>600 wide window height</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>300 wide window height</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>Vertical site cut from A</td>
<td>7</td>
</tr>
<tr>
<td>F</td>
<td>Horiz. site cut from C</td>
<td>8</td>
</tr>
<tr>
<td>G</td>
<td>Horiz. site cut from D</td>
<td>2</td>
</tr>
<tr>
<td>H</td>
<td>Horiz. site cut from A</td>
<td>5</td>
</tr>
<tr>
<td>J</td>
<td>Horiz. site cut from B</td>
<td>1</td>
</tr>
</tbody>
</table>

INSTALLATION DETAIL
4.1 DELIVERY AND STORAGE

UNLOADING PANEL PACKS
Panel packs should only be unloaded and moved with approved lifting devices. Before use, the lifting devices should be checked for the required lifting tags. Packs should be unloaded as close as possible to the intended installation area. This will increase work efficiency and minimise the need for secondary lifting.

NOTE: Secondary handling increases the risk of panel damage. The repair of damage sustained during lifting and moving is the responsibility of the lifter. Where damage is excessive, PowerPanelXL panels must be replaced.

STORAGE
All materials must be kept dry and preferably stored undercover. Care should be taken to avoid sagging or damage to ends, edges and surfaces.

All Hebel products must be stacked on edge and properly supported off the ground, on a level platform. Panel bundles can be stacked two high. The project engineer should be consulted as to the adequacy of the structure to support the stacked bundles.

If outside, Hebel panels must be stored off the ground and protected from the weather. Only single bundles positioned on the ground can be opened. To provide a level surface, we recommend placing temporary joists beneath the supporting cleats.

UNSTRAPPING PACKS
Ensure appropriate bracing is installed to packs prior to removal of strapping to prevent panels from falling. Panels can be held together with sash clamps, ratchet, straps or Hebel stabilising bars.
4.2 PANEL HANDLING

MANUAL HANDLING

Hebel recommends using a trolley or other mechanical apparatus to move the PowerPanelXL panels around the work site. Manual handling where people physically move a panel should be kept to a minimum, with the weight being supported by an individual kept as small as possible. Any concerns regarding the weight to be handled should be discussed with the panel installation contractor.

To minimise the possibility of manual handling injuries, Hebel suggests the following:

- Use mechanical aids, such as trolleys, forklifts, cranes and levers, or team lifting to move panels
- Keep the work place clean to reduce the risk of slips, trips and falls, which can cause injury
- Plan the sequence of installation to minimise panel movements and avoid awkward lifts
- Train employees in good lifting techniques to minimise the risk of injury.

HEBEL HOIST

Building back-to-back compliant zero boundary walls on site has been largely unachievable using traditional techniques. The difficulty includes ensuring that the walls are positioned correctly without overstepping their boundaries and that the installation techniques adopted do not in any way compromise fire performance of these walls.

Due to these issues and others such as ensuring that acoustic performance (as a minimum) achieves similar performance as that required of party walls, Hebel has developed an innovative hoisting solution that now makes it easy to install boundary walls and vastly improves the efficiency of installing intertenancy walls in areas with limited access.

This revolutionary patented lifting device attaches directly to the frame and features a rail and hoist which allows panels to be safely lifted, transported and placed precisely from above before being fixed from the inside of the building.

Suitable for steel or timber frames up to three storeys high, the Hebel Hoist allows builders to streamline their workflow by erecting all the frames first before installing the external panels. It also has the potential to allow builders to increase the footprint of their buildings by moving external walls right up to the boundary.

The Hebel Hoist is only available through trained and accredited Hebel installers. Please contact your local Hebel sales representative or the Hebel customer service centre to discuss the opportunity to improve your efficiency and profitability using Hebel Hoist.
MECHANICALLY ASSISTED HANDLING

Moving and handling Hebel panels should be done as much as possible using mechanical aids such as forklifts, cranes and special panels lifting trolleys.

HEALTH, SAFETY & PERSONAL PROTECTIVE EQUIPMENT (PPE)

Hebel products are cement-based, which may irritate the skin, resulting in itching and occasionally a red rash. The wearing of gloves and suitable clothing to reduce abrasion and irritation of the skin is recommended when handling Hebel products.

Approved respirators (AS/NZS 1715 and AS/NZS 1716) and eye protection (AS 1336) should be worn at all times when cutting and chassing. Refer to the Hebel Material Safety Data Sheets. Refer to the back of this Design & Installation Guide for further information regarding health and safety.

CUTTING

The use of power tools when cutting concrete products may cause dust, which contains respirable crystalline silica, with the potential to cause bronchitis, silicous and lung cancer after repeated and prolonged exposure. When using power or hand tools, on Hebel products, wear a P1 or P2 respirator and eye protection. When cutting, routing or chasing Hebel products with power tools, use dust extraction equipment and wear hearing protection. Refer to the appropriate Hebel MSDS. For further information, contact Hebel or visit the website: www.hebel.com.au

Reinforcement exposed during cutting must be coated with a liberal application of Hebel Anti-corrosion protection paint.
4.3 Design, Detailing and Performance Responsibilities

Hebel engages independent testing laboratories to test and report on the performance of a wall in accordance with the relevant Australian Standards. Consultants use these reports as the basis for opinions (estimates of laboratory performance) they issue for variations or different arrangements to the tested system, and also to design and specify walls that meet appropriate criteria for a particular project. Using their experience, the consultant will make judgement about on-site installed performance of various walls. The performance levels of walls documented in this guide are either what is reported in a test or the documented opinion of consultants. Performance in projects is typically the responsibility of:

Project Consultants (Structural, Fire, Acoustic, etc.)

These consultants are typically responsible for the following:

- Opinions on expected laboratory performance of wall configurations that vary from actual test configuration, such as substitution products and components
- Judgements about expected field performance using laboratory test reports and practical experience
- Design, specification and certification of structural, fire, acoustic, durability, weather tightness and any other required performance criteria for individual projects

This involves the design and selection of building elements, such as wall and floors and their integration into the building considering the following:

- Interface of different building elements and to the structure / substrate
- Wall and floor junctions
- Penetrations
- Flashing issues
- Room / building geometry
- Acoustic and water penetration field-testing.

Project Certifier and/or Builder

These professionals are typically responsible for:

- Identifying the performance requirements for the project in accordance with the National Construction Code and clearly communicating this to the relevant parties.
- Applicability of any performance characteristics supplied by Hebel including test and opinions for the project.
- The project consultant's responsibilities detailed above if one is not engaged in the project.

Hebel does not provide consulting services. Hebel only provides information that has been prepared by others and therefore shall not be considered experts in the field.

Any party using the information contained in this guide or supplied by Hebel in the course of a project must satisfy themselves that it is true, current and appropriate for the application, consequently accepting responsibility for its use.

It is the responsibility of the architectural designer and engineering parties to ensure that the details in this design guide are appropriate for the intended application.

The recommendations in this guide are formulated along the lines of good building practice, but are not intended to be an exhaustive statement of all relevant data.

Hebel is not responsible for the performance of constructed walls, including field performance, and does not interpret or make judgements about performance requirements in the NCC.
A.1 Manufacturing tolerances

<table>
<thead>
<tr>
<th>Property</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>±5mm</td>
</tr>
<tr>
<td>Width</td>
<td>±1.5mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>±1.5mm</td>
</tr>
<tr>
<td>Diagonals (max.)</td>
<td>5mm</td>
</tr>
<tr>
<td>Edge Straightness Deviation (max.)</td>
<td>1.5mm</td>
</tr>
</tbody>
</table>

A.2 PowerPanelXL physical properties

- Hebel PowerPanelXL profile and nominal dimensions are shown in Section 1.4.
- Panel reinforcement is a single layer of steel mesh with 4 longitudinal wires of 4mm diameter.
- Nominal dry density = 400 kg/m3.
- Average working density = 540 kg/m3 at 35% moisture content.
- Average service life density = 440 kg/m3 at 10% moisture content.

A.3 PowerPanelXL strength properties

- Characteristic Compressive Strength or AAC, \(f'_{\text{cm}} = 2.38 \text{ MPa} \).
- Average Compressive Strength of AAC = 2.8 MPa.
- Characteristic Modulus of Rupture, \(f'_{\text{ut}} = 0.40 \text{ MPa} \).

A.4 PowerPanelXL acoustic properties

- Panel only with no plasterboard or other lining \(R_W = 34\text{dB} \), \(R_W+C_{\text{tr}} = 30\text{dB} \) (refer to Acoustic Logic Test Report ref: 2010861.15/2602A/R2 GW).

A.5 PowerPanelXL thermal properties

- R-Value of PowerPanelXL with no plasterboard or other lining = 0.60 m2.K/W (10% moisture content).

A.6 Fire hazard indices

Hebel products have BCA Group Number 1 and also the following early fire hazard indices, determined in accordance with AS1530.3:1990:

<table>
<thead>
<tr>
<th>Index</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignitability Index</td>
<td>0</td>
</tr>
<tr>
<td>Spread of Flame Index</td>
<td>0</td>
</tr>
<tr>
<td>Heat Development Index</td>
<td>0</td>
</tr>
<tr>
<td>Smoke Development Index</td>
<td>0-1</td>
</tr>
</tbody>
</table>

A.7 Fire Resistance Level (FRL) Ratings

For fire performance characteristics of Hebel PowerPanelXL, refer to Section 2.2 of this guide.

A.8 Typical Hebel PowerPanelXL and Panel X-Section

NOTES:
1. BTM: To locate the approximate location of reinforcing the smooth edge of the panel is the bottom (BTM).
2. Bars: 4x4mm Ø longitudinal & 6-8 transverse bars depending on panel length.
3. Tolerance: The width & thickness of PowerPanelXL panels are manufactured to a tolerance of +1 or -1.5mm.
4. Cutting: Panel to be no less than 270mm wide. Where it is unavoidable to install a panel narrower than 270mm (eg between windows) the panel must not be less than 100mm in width and must be supported continuously along the length by top hats.
APPENDIX B: ARCHITECTURAL SPECIFICATION

This specification should be adopted as a guide only, and shall be superseded by the contract specifications of the project.

* Insert or select appropriate specifications.

This information can be downloaded from the CSR Hebel website – www.hebel.com.au

Scope

The contractor shall furnish all material and equipment required to satisfactorily complete the installation and jointing of Hebel PowerPanelXL where indicated in the contract specification and/or on the layout drawings.

Materials

All AAC material shall be Hebel PowerPanelXL as manufactured by CSR Hebel. Screws for fixing Hebel PowerPanelXL shall be supplied, manufactured or approved by CSR Hebel.

Timber or steel frame components shall be those as specified and designed by the project engineer or building designer.

All lining materials, fixings and finishing products shall be those manufactured and/or supplied by CSR Gyprock (or products of equivalent or better performance). Plasterboard shall be manufactured to meet the dimensional requirements of AS/NZS 2588 ‘Gypsum Plasterboard’.

All infill material shall be those manufactured and/or supplied by CSR Bradford (or products of equivalent or better performance).

Hebel PowerPanelXL

The contractor shall supply and install the Hebel PowerPanelXL External Wall System (Hebel Code)* system as detailed in the project drawings and or specifications, in accordance with CSR Hebel Houses & Low Rise Multi-Residential PowerPanelXL External Walls Design and Installation Guide.

Hebel PowerPanelXL framing, fixing and joints shall be designed and installed to comply with the requirements for an *Ultimate Design Wind Pressure of *..................... kPa maximum/minimum.

The wall shall have a Fire Resistance Level rating of *..................... / for an internal fire source, in accordance with the fire requirements of AS1530.4.

The wall shall have a Fire Resistance Level rating of *..................... / for an external fire source, and/or *..................... / for an external fire source, in accordance with the requirements of AS1530.4.

Installation shall be carried out to the level specified for a field acoustic performance of *..................... using cavity infill of * Bradford All movement joints shall be caulked with *..................... backing rod and *..................... external grade acoustic and/or fire rated paintable sealant installed in accordance with the sealant manufacturer’s recommendations.

Wall Framing

Refer to project engineer or building designer documentation for the frame design.

Fixings

Screws to fix the Hebel PowerPanelXL to the top hat shall be *..................... and *Class Screws to fix the top hats to the stud framing shall be *..................... and *Class

Air barrier / sarking

The air barrier / sarking shall be *..................... / / / / / / for an internal fire source, in accordance with the manufacturer’s instructions, to comply with the requirements for an *Ultimate Design Wind Pressure of *..................... kPa maximum/minimum.

Internal plasterboard lining

For non fire-rated wall systems, the framing shall be lined on the internal side with one layer of *..................... mm Gyprock® and *..................... plasterboard, OR

For fire-rated wall systems, the framing shall be lined on the internal side with one layer of *..................... mm Gyprock® and *..................... plasterboard, * followed by a second layer of *..................... mm Gyprock® plasterboard.

All layers shall be fixed and caulked as specified for the relevant system in the Gyprock® Commercial Installation Guide, NoGYP548, other relevant CSR Gyprock Technical Literature, and Rondo Building Services literature or appropriate steel frame manufacturer’s literature.

Levels of finish – internal

All framing, plasterboard lining, jointing and finishing shall be carried out to *Level Level of Finish, in accordance with Gyprock® Residential Installation Guide, NoGYP547 and/or AS/NZS 2589.1 ‘Gypsum Linings in Residential and Light Commercial Construction – Application and Finishing’.

Hebel PowerPanelXL finishing

Coatings systems must conform to minimum system requirements as per details in Section 2.5 of the Hebel PowerPanelXL External Walls Design and Installation Guide. Use of systems other than CSR Hebel approved Dulux AcraTex systems must be independently verified to conform.

Hebel PowerPanelXL shall be externally coated with *..................... render and *..................... coating system, which shall be installed to the manufacturer’s recommendations.

If Hebel PowerPanelXL is attached to top hats by screwing from the outside, then all screw heads in the Hebel PowerPanelXL shall be covered with * Hebel Adhesive/Hebel Patch, *..................... and shall be sanded flush with the PowerPanelXL surface.

Sealing and caulking

All movement, control and abutment joints shall be caulked with *..................... backing rod and *..................... an external grade acoustic and/or fire rated paintable sealant installed in accordance with the sealant manufacturer’s recommendations.
APPENDIX C: POWERPANELXL EXTERNAL WALL SYSTEM DESCRIPTIONS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEB1700</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Single Foil, 70mm Stud, 24mm Cavity</td>
</tr>
<tr>
<td>HEB1701</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Single Foil, 90mm Stud, 24mm Cavity</td>
</tr>
<tr>
<td>HEB1702</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Single Foil + R2.0 Batt, 70mm Stud, 24mm Cavity</td>
</tr>
<tr>
<td>HEB1703</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Single Foil + R2.0 Batt, 90mm Stud, 24mm Cavity</td>
</tr>
<tr>
<td>HEB1704</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Double Foil, 70mm Stud, 24mm Cavity</td>
</tr>
<tr>
<td>HEB1705</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Double Foil, 90mm Stud, 24mm Cavity</td>
</tr>
<tr>
<td>HEB1706</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Double Foil + R2.0 Batt, 70mm Stud, 24mm Cavity</td>
</tr>
<tr>
<td>HEB1707</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Double Foil + R2.0 Batt, 90mm Stud, 24mm Cavity</td>
</tr>
<tr>
<td>HEB1708</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Single Foil, 70mm Stud, 35mm Cavity</td>
</tr>
<tr>
<td>HEB1709</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Single Foil, 90mm Stud, 35mm Cavity</td>
</tr>
<tr>
<td>HEB1710</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Single Foil + R2.0 Batt, 70mm Stud, 35mm Cavity</td>
</tr>
<tr>
<td>HEB1711</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Single Foil + R2.0 Batt, 90mm Stud, 35mm Cavity</td>
</tr>
<tr>
<td>HEB1712</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Double Foil, 70mm Stud, 35mm Cavity</td>
</tr>
<tr>
<td>HEB1713</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Double Foil, 90mm Stud, 35mm Cavity</td>
</tr>
<tr>
<td>HEB1714</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Double Foil + R2.0 Batt, 70mm Stud, 35mm Cavity</td>
</tr>
<tr>
<td>HEB1715</td>
<td>Hebel Houses & Low Rise External Wall PowerPanelXL Double Foil + R2.0 Batt, 90mm Stud, 35mm Cavity</td>
</tr>
</tbody>
</table>

NOTES
- Single Foil = Single sided reflective foil
- Double Foil = Double sided reflective foil
Health & safety
Information on any known health risks of our products and how to handle them safely is on product packaging and / or the accompanying documentation.
Additional information is listed in the Material Safety Data Sheet (MSDS). To obtain a copy of a MSDS, download from www.hebel.com.au. Contractors are required by law to perform their own risk assessments before undertaking work.

Performance & certification
Hebel® products and systems are developed in Australia by CSR Building Products. ABN. 55 008 631 356. It is a manufacturer and supplier of Hebel Autoclaved Aerated Concrete (AAC) products. Because it is a manufacturer and supplier only, CSR does not employ people qualified as Accredited or Principal Certifiers.
CSR is therefore unable to provide Construction Compliance Certificates or Statements of Compliance. CSR conducts appropriate testing of its products and systems to determine performance levels. These include structural, fire and acoustic tests. Testing is conducted and certified by appropriate specialists in these fields. When using Hebel products and systems in specific projects, such specialists should be consulted to ensure compliance with the Building Code of Australia and relevant Australian Standards.

Disclaimer
Information presented in this document is supplied in good faith and to the best of our knowledge was accurate at the time of preparation. The provision of this information should not be construed as a recommendation to use any of our products in violation of any patent rights or in breach of any statute or regulation. Users are advised to make their own determination as to the suitability of this information in relation to their particular purpose or specific circumstances. Since the information contained in this document may be applied under conditions beyond our control, no responsibility can be accepted by CSR or its staff for any loss or damage caused by any person acting or refraining from action as a result of misuse of this information.

Other
The design of a wall, floor or fence system requires the services of professional consultants. This document has been prepared as a source of information to provide general guidance to those consultants – and in no way replaces the services of the professional consultant and relevant engineers designing the project.
No liability can therefore be accepted by CSR or other parties for the use of this document. Hebel products and systems undergo constant research and development to integrate new technology and reflect ongoing performance enhancement.
Hebel systems are constantly reviewed so as to reflect any changes in legislative building requirements and or general developments in common building practice, due to our commitment to continual development and improving our building systems.
We advise that all users of this document should regularly check that this document is current, and they are applying our latest design information.
The latest editions of our documents are available on our website:
www.hebel.com.au

Hebel® is a registered trademark of the Xella group. CSR Building Products Ltd is an exclusive licensee of Xella. CSR Hebel is a business of CSR Building Products Ltd
ABN 55 008 631 356.
CSR, PowerPanel®, PowerClad®, Hebel Block®, PowerFloor®, Hebel Floor®, PowerFence®, HighBuild®, are registered trademarks of CSR Building Products Limited.

CSR, Triniti 3, 39 Delhi Road
North Ryde NSW 2113, Australia
Telephone +61 2 9235 8000

HELTIT016 November 2016